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In recent years a large number of papers have been devoted to the development of vari- 
ous models of elastic media with microstructure. An analysis shows that in all these 
models there is some scale parameter 1, which can characterize the discreteness, the 
long-range effectiveness, the scale of correlation, and so forth. The appropriate theories 
can be regarded as weakly or strongly nonlocal. The former are represented by the con- 

tinuum theory of Cosserat, the couple-stress theory, the multipolar theory of elasticity, 

and so forth (e.g. see [l-4]). All these can be interpreted as the next approximation 
with respect to the usual (local) theory of elasticity. The parameter I in these cases 

must be considered as small. 
Strongly nonlocal theories which do not assume the smallness of I, were examined in 

[S-7] (see also review [8]) for unbounded media. 
In this paper boundary value problems of nonlocal theory are examined ; the transition 

from exact to approximate models is investigated ; a connection is established with 
boundary value problems of weakly nonlocal theories [Y, lo] in the formulation of which 

the physical significance of boundary conditions was previously unclear. 

The malor portion of this work is devoted to one-dimensional problems. In Sect. 1, 
coupling conditions of two media with microstructure are examined, the analog to 
Green’s formula is constructed, the fundamental boundary value problems and their equi- 
valent integral equations are written down. In Sect. 2. the structure of the general solu- 
tion of equations of motion for a homogeneous medium is examined. It is shown that 
the problem is reduced to the determination of roots of the energy operator in the com- 

plex plane of wave numbers. Green’s function is constructed. Characteristic differences 
between the nonlocal and the classical theory are examined. 

Section 3 is devoted to various approximate models and their regions of applicability. 
The long-wave approximation is compared to the approximation developed in this paper 
using first roots of the energy operator. The advantages of the latter approximation will 
be. the correct description of phenomena for which waves with the length of the order 1 
are essential, the preservation of the principal terms of the asymptotics, and the possibi- 

lity of correct approximate formulation of the boundary value problems. In Sect.4, as 
an illustration the exact and approximate solutions of the fundamental problems are 
examined for the semi-bounded region. 

In Sect. 5 some generalizations are presented for the case of a three-dimensional 
medium with central interaction. 
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1, The equations of motion of an inhomogeneous, linearly elastic, one-dimensional 
medium with nonlocal interaction have the form [ll] 

-02p (5)u (5, 0) + S@ ( 2, 5’)u (2’, 0) ds’ = q (5, 0) (1.1) 
Here u is the displacement, 4 are external forces, p is the density of the mass, w is 

the parameter of Fourier transformation with respect to time (or, which is the same, it 

is the frequency of established harmonic oscillations), @ (5, 5’) is the kernel of the 
elastic energy operator. This kernel characterizes the nonlocal intera,ction. 

In the following text, the explicit dependence of field quantities on (II will not be 

indicated. For expressions of the type (1. l), as a rule, the operator notation will be uti- 

lized Q,$ I (-02p + @)U = q 

The kernel of the operator @ must satisfy the following conditions 

a, (5, 2’) = Q (s’, 4, Ja, (3, z’)ds’ = 0 (1.2) 

It follows from here that @ (z, 5’) can be represented in the form 

D (2, 2’) = II, (x)6 (x - 2’) - Y (5, Z’), 4 (5) = JW (5, X’)dZ’ (1.3) 

Here \y (5, 2’) is the striffness of the elastic coupling (*), which connects points z 

and x’. 
It is subsequently assumed that the long-range action is random, but limited, i.e. there 

exists a characteristic radius I of long-range forces such that y (x, x’) = 0 for 
/x--5 >I. 

Equation (1.1) can describe the motion of a continuous medium with long-range inter- 

action and also of a discrete chain with interaction of any number of neighbors. It was 
shown in [5] that in the latter case the Fourier transforms of field variables (which will 

be designated by the same letter, but with the argument k) must be concentrated in k 
space on the section Ik( ,< n / a, where a is the distance between nodes of the lattice. 

In the limiting case of interaction be 

tween a large number of neighbors 
------- (1 > a) the eqlations of the chain for 

not too short waves transform into equa- 

_--_-&_ ___s+--s- J--- tions of the continuum with one scale 
I parameter 1. 

c _--y*-- +_- mmm-yp_~_~_ _~~.~_ Let us examine the problem of coup- 

Fig. 1 
ling between two media with different 

characteristics (the characteristics of the 
second medium will be designated by an asterisk). In Fig. 1 the coupling of chains with 

interaction of two neighbors and the diagram for coupling in the general case are shown. 

In each medium it is possible to select boundary regions S and S* with a width of the 
order of l and 1” such that in these regions the parameters are perturbed by the interac- 
tion with the adjacent medium. Regions of unperturbed parameters are designated by D 
and D* We write V = D + S and V* = D* + S*. 

Equations of motion for the transition region S + S* are written iu rhe form 

- 02p,& + SD_& = qs, - dps* US’ + S”mL = qs* (1.4) 

‘) This particular characteristic is most convenient in the formulation of boundary value 
problems. 
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Here S and S*are operators of multiplication by characteristic functions of boundary 
regions, us = Su , etc. Due to the presence of long-range interaction the terms SQu 
and S*Ou are responsible for the coupling of these equations among themselves and 
with equations for the unperturbed regions. Equation (1.4) represents the analog of coup- 

ling conditions in the local theory of a continuous medium. In particular, if the perturbed 
bonds are severed, these equations must yield the boundary conditions of force for each 
medium. 

Turning now to the formulation of fundamental boundary value problems, we split the 
operator of elastic couplings into a sum of operators 

Y! = ‘Yv + Yv* + Y?VV. (1.5) 

Y’v = VW, Yp = v*Yv*, Ym. =vYv* +v*Yv 

Here W, and Yv* characterize the interaction of poinu of the respective media. 

Yvv* corresponds to interaction between media (in the figure to each one of the opera- 

tors corresponds its own type of coupling). Substituting (1.5) into (1.3) we find the cor- 

responding decomposition of the operator 

@=Qv+Q>v*+CPvv. (1.6) 

Here for example (I is the identity operator) 

Qv=$vI--TV, $v @)= 1 Yv (z, 5’) dx’ (1.7) 

If the media do not interact with each other, then Yvv. = 0 and consequently 
@,.=O.In this case equations (1.1) are split into independent equations of both media. 
For the medium in region V we have 

- ospuv + (-Pv Uv = Qv (1.8) 

It is easy to see that (&allows the following representation 

(PV =D@ + I’, r =su+r w 

This permits us to write (1.8) in the form of the following equivalent system ( l ) 
D@,u 3 --wader + D@u = qD, I?& E --02pu~ + 13.4 = qs (1.10) 

The first equation connects displacements with forces in region D. For I -+ 0 it 
transforms into the equation of motion for the usual (local) theory of elasticity. The 
second equation relates displacements and forces in the boundary region s and can be 

obtained from conditions of coupling (1.4). For E -+ 0 this equation transforms into 
the usual boundary conditions of force. This analogy permits us to call the formulated 

boundary value problem (1. lo), the first fundamental problem of nonlocal theory of ela- 
stisity. The integral equation (1. 8) is equivalent to this formulation. 

A semi-bounded region was examined above. The generalization to a bounded region 
V is obvious. 

We note that the static problem for the bounded region can be reduced to a Fredholm 
integral equation of the second kind with a symmetrical positive definite kernel if the 
assumption is made that all elastic couplings are stable, i.e. Y(z, 5’) > 0 which is natu- 

ral for a mechanical system. This equation is obtained from (1.8) by standard substitu- 

*) In the notation of displacement of the region V it is convenient to omit the subscript 
V where the corresponding section is contained in the operators. 
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tion of variables and has the form 
U(Z)- h’(z, z’)v(z’)dx’= q”(z) 

c 
(3: E 1’) (1.11) 

v 

A distinctive property of Eq. (1.11) is that the kernel K(r, z’) = 0 for I 5 - Z’ 1 > 1. 
Here the parameter I, as a rule, is small in comparison to the dimensions of the region. 

Let us now turn to the second fundamental problem where in the boundary region the 

displacements, and not the forces, are given, i. e. 

[)a,, IL = c/J,, 1‘s = h (2.13) 

The function h(s) is given on S. For this problem we can construct an equivalent 

integral equation -02j>U1,$ Ucl,u,=,/, (jD = qL) -- D@,h) (1.15) 

As with the first equation, in the static case this equation can be reduced to a Fredholm 

equation of the second kind with a symmetrical kernel. 

We note especially the important case of the homogeneous medium. In this case 

‘I’(r, I’) = ‘I’(r - 5’) and q(x) = $0, p(z) = p0 are constants. Equation (1.14) trans- 

forms into a Fredholm equation with a difference kernel 

(- C$ po + $0) U (x) - [ Y (I -Cc’) u (z’) f/z’ = I (x) (X t n) (2.15) 

i) 

The difference between the first and the second fundamental problem should he empha- 

sized. For a homogeneous medium the first problem does not reduce to an integral equa- 

tion with a difference kernel by virtue of essential inhomogeneity of elastic couplings 

in the boundary region. This, as will be seen later, leads to the situation where the solu- 

tion of the first problem for the homogeneous medium in the nonlocal theory of elasticity 

is considerably more complicated than the solution of the second problem. 

Developing further the analogy with the usual theory of elasticity, Green’s formula is 

constructed in the nonlocal theory. 

It follows from (1.7) that CDV = (D$, where @v+ is the conjugate operator. Taking 

into account (1.9), we obtain the operator identity 

D@+I'=@D+I'+ 

Both parts of the equation are applied to u and an inertial term is added in the form 

ospuv = ospun + 0sf.x.Q 

Taking into consideration (1. lo), we find 

Q&L) .= q‘g + r,u - rous (1.16) 

Here r,U = qs is the analog of density of the simple layer. r,‘Us is the analog of 

the double layer with density Us. For 1 + 0 they convert to the usual layers. 

Let G, (LIZ, 2’) denote the fundamental solution of Eq.(l. 1). Applying operator G, 
to (1.16). we obtain Green’s formula 

un =- G,q, + Gwqs--GJch (1.17) 

From this formula we can find the representation of the solution of the first tundamen- 

tal problem through Green’s function 

uv(4= \Go( x, 2’) qn (5’) dx’ -+ \ G, (x, x’) qs (5’) dx’ (z E VI 
6 B 
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if G, (2, 2’) is subjected to the following condition: 

s r. (x, x”) G, (XV, x’) !!X” = 6 (x - x’) (2, 2’ E’S) 

The solution of the second fundamental problem has the form 

uD(x) = \G,( 2, (z E D) 
I? 

z’) qD (2’) dx’ - j dx’ [ dx”G, (x, zz”)r: (xv, s’) Us (x’) 
14 

with the conditior G, (x, x’) = 0, if z or 5’ belong to 8. 
Apparently Green’s functions are the resolvents of the corresponding integral equations 

(1.8) and (1.14). 
With the aid of (1.17) we can also formulate the analog to the mixed problem of the 

theory of elasticity. 

In conclusion we emphasize that the obtained results are valid aiso for a discrete 

medium. In this case the integral equations for a bounded region are equivalent to a 
system of algebraic equations. 

2. Let us turn to the examination of a homogeneous medium. We start with an inves- 

tigation of the general solution of the equation of motion (1.1) for this case. This will 
permit us to examine the structure of solutions of various boundary value problems from 
a unified point of view. After Fourier transformation with respect to IC (k-representation) 
Eq. (1.1) for the homogeneous medium takes the form 

CD’, (k)u (k) Z [- w2po + @ @)I u jk) = q (k) (2.1) 

where @ (k) is the Fourier transform of @ (x). Taking into consideration (1.2) and 
(1.3), we have 

CD (k) = 2 $ Y (z) (1 - cos /x) dx (2.2) 

We can show [U] that functions of this form are analytically continued into the com- 

plex plane k as entire functions of the first order of growth and of the I -type. For an 
absolutely integrable Y (x) the function CD (k) is bounded on the real axis. It follows 
from real and even properties of @ (k) that if Q, (kc,) = O,then --kl, K and -g 

(the bar indicates complex conjugate values) will also be zeros of @ (k) . 
Let us assume that all couplings are stable, i.e. Y (x) > 0. Then it is easy to see 

that Q, (k) does not have zeros on the real and imaginary axes with the exception of 

the double root k = 0. When the indicated conditions are fulfilled, an expansion with 
respect to roots [13] of the following form is appropriate 

(2.3) 

Here k, are roots of @ (k) which are located in the upper half-plane and are renum- 
bered in the order of increasing modulus. As will become clear later, the constant co 

will be the modulus of elasticity of the medium in the zeroth long-wave approximation. 
We note that for the discrete model, a (k) is a peritidic function. The values of k 

are subject to the additional conditior lRe/c ;< n / a [6, 141. Consequently, the region 
of allowable values of k will be a complex cylinder. The number of roots k, is equal 
to 2N, where N is the number of interacting neighbors. 

The general solution of the homogeneous equation corresponding to (2.1) can be ob- 
tained by superposition of waves of the form exp [ ik (0)x], where k (a) is found from 
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o”p, = 0 (k) (2.4) 

Characteristically, the nonlocal theory exhibits for each w the existence of an even 
number of, generally speaking, complex roots k,(o) of the dispersion equation (for the 

discrete model with limited long-range interaction their number, as was noted, is finite). 
For the unbounded medium the real k,(o) which correspond to undamped waves, are of 
fundamental interest. These waves are completely characterized by the dispersion curve 

o = o(k), Im k = 0. The group velocity w’(k) of these waves depends on k (spatial 

dispersion). It is important to emphasize that the boundedness of CD(k) leads to the 

appearance of a limit frequency 0 = wmax for undamped waves. In this manner, in con- 
trast to generally accepted concepts 1141, this effect exists not only in descrete media. 

In the study of wave scattering on homogeneities and on boundaries of separation of 

homogeneous media and also for boundary value problems the complex k, (0) which 

correspond to damped waves have an essential significance along with the real values. 

For fixed o # 0 we have in analogy to (2.3) 

@w(k) = - 02Pofi (’ -k+) jh,2(w)-f$ npri u-0) (2.5) 
n=ll 

The remaining k, (a) are renumbered in such a manner that Imk, (co) > 0. 
The general solution of the inhomogeneous equation (2.1) in the z-representation 

has the form 
u (I) = 1 G, (z - 5’) q (id) &c’ + 2 [a,ei’~@“‘” + p, e?n+‘)*] (2.6) 

n=o 

Here the first term is the particular solution constructed with the aid of Green’s func- 

tion G, (5) of the unbounded medium, a, and fin are arbitrary constants. 
It follows from (2.5) that G,,, (k) = <D;’ (k) is a meromorphic function. With some 

not very strong limitations on @, (k) we can write the expansion of G, (k) into simple 

fractions in the following form: Q) 

G, (k) = - --& + 2k2 2 
1 

n=O k,, (0) ar,’ lk, (NJ Ik2 - kn2 (Nl 
(m#o) (2.7) 

Here the following evaluation is applicable (with the assumption that @’ [k, (co)1 # 
P 0) 

In the limiting case of o <@ma= , expression (2.7) assumes the form 
00 

(2.9) 

In the static case (s-representation) we have 
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G (2) = e + go6 (z) - D,B (2.10) 

where the first term is the usual static Green’s function. 
If for some o there are multiple roots (corresponding for example to extreme values 

of the dispersion curve), then among the solutions of the homogeneous equation there 

will be characteristic functions of the form a? exp [ ik, (co )z] (p. = 0, 1,. . . , m - 1, 

where m is the multiplicity of the root k, (CO)). The equations presented above change 
in an obvious manner. 

Specific differences between the nonlocal and the classical theory which become 
apparent already in the one-dimensional case were pointed out above. Here we enume- 

rate the basic ones: (a) a scale parameter exists ; (b) the boundary is replaced by a bound- 

ary region ; (c) new undamped and damped waves (*) appear (in statics damped charac- 

teristic functions appear); (d) a limit frequency exists for undamped waves; (e) the velo- 
city of waves depends on their length. 

It is natural to try to construct the simplest possible approximate models which quan- 
titatively or qualitatively take correctly into account some of these effects. Let us exa- 

mine from this point of view various approximate models and the regions of their appli- 
cability. 

3. The simplest models can be obtained if @ (k) is approximated by a polynomial 

~,-,k2P, (/?), where P, (A) is a real polynolial of h of themth degree. This corresponds 
to a replacement of the integral operator by a differential operator. The equations of 

motion take the form which is characteristic for phenomenological theories with higher 

derivatives (such as the couple-stress theory, multipolar theory, etc. ) 

o2po r.4 (5) + caDx2 P, (-&2 )rJ (a$ = --Q (4 (3.4, 

Two, in principle different, approaches are possible, In the final analysis the physical 
significance and the region of applicability of such models depend on these approaches, 

The assumption is usually accepted that the polynomial c,k2P,(kz) represents a section 
of the series O(k) in the vicinity of k = 0. If (D(k) is given or the behavior of the dis- 
persion curve is known in the region of small k (long waves), then the first approxima- 
tion can be obtained assuming Pr(k2) = 1 + 12Alk2, where A,is an appropriate nondimen- 
sional constant. This approximation allows to account correctly for the dispersion of 
long waves. This dispersion must be considered as weak. These approximations are cal- 
led long-wave approximations, and the corresponding models are referred to as media 

with weak spatial dispersion. The scale parameter I must be considered as small, and 
the theory strictly speaking is not applicable to distances of the order of 1 , and it is even 
less applicable to distances less than I, If p,(k2) is extrapolated into the region of large 
k (short waves), it is formally possible to obtain additional characteristic functions cor- 
responding to roots of Pl(k2) . However, these functions, generally speaking, will not have 

anything in common with the exact functions. Consequently, this approximation is not 

suitable for boundary value problems. We note that for any approximating polynomial 

which satisfies the condition of stability a limit frequency does not exist for undamped 
waves. 

l ) In the three-dimensional case new types of surface waves are also possible. 
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Another possible method for the approximation of @ (k) consists in the construction 
of an interpolating polynomial in first roots. Taking into account peculiarities of distri- 

bution of roots of a (k), we find that for Y (2) > 0 the polynomial of the first appro- 

ximation must have the form 
@r(k) = c,k2 (1 - $j (1 - ej (3.2) 

The corresponding differential operator is of the sixth order. 

Apparently @,, (k) cannot claim the same accuracy of approximation in the region 

of small k as c,k2P, (k2). However, advantages of this model will be a qualitatively 

correct description of phenomena for which waves with a length of the order of 1 are 
essential, a preservation of the principal terms of the asymptotics of solutions, and the 
possibility of correct approximate formulation of boundary value problems. 

For the adopted model with the assumption o < tinraY we have 

(3.3) 

Here the second representation is correct for not too high frequencies. When this condi- 
tion is fulfilled,Green’s function G, (k) in the approximation using first roots has the 

form 

(3.4) 

For the approximated static Green’s function G1 (z) we obtain 

If it is not required that Y (x) > 0, then roots @ (k), generally speaking, may lie on 
the imaginary axis. In this case the approximated differential operator will be of the 

fourth order and the characteristic functions of the operator do not oscillate. The corre- 
sponding equations of motion can be viewed as the one-dimensional analog of equations 

of the couple-stress theory of elasticity. 
Let us also mention other possible approximate models not connected with approxima- 

tion by polynomials. In a number of case it may be of interest to prescribe an approxi- 

mation of the dispersion curve over a wide range of waves with the aid of an appropriate 

function k (e. g. in the case of interpolation of experimental data). This model is good 
for the description of undamped waves, but it cannot be extended to the complex plane 
and it cannot be used in boundary value problems. 

Models based on approximations of the following type can have a wider range of appli- 

cability Y (z) -z 3 c,,r3 (I z 1 < I) 

Y(x)0 (III> 0 

Y (.c) = (2/n)“’ ~~1-3 esp(- x1/:/?) 

These equations correspond to 

( 
sin kl 

CD (k) = 6 cp 1 - - h-1 i 
(D(k)= 2coP(1 - e -‘/z(W) 

Such models describe, qualitatively, correctly all long-range effects. 

4. As an illustration we shall examine the solutions of fundamental static problems 
in a homogeneous medium for a semi-bounded region D (0 < 5 < 00) and a bounded 
region S(--l < 2 < 0). 
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Let us start with the simpler second fundamental peoblem 

J@(x - x’)u(x’)dz’ = q(z) (5 ED), u&) =h(s) (5 E 8) (4.1) 

Assuming in (1.15) that o = 0 and selecting the units of measurement such that 
q,, = 1, we obtain the equivalent integral equation in the form 

cu 

u (z) -. Y(x -2’) (I (x’) dx’ = f (T) 
c 

(0 < x < cc) 

0 

An equation of this form was examined in 1151 with the additional condition Q,(k) = 
= 1 - Y(k) # 0 (- CC < k < m) which is not fulfilled in the present case. Apparently 

the method in paper [15] allows the proper generalization (see also [16]). However, in 
order to improve clarity and also to obtain an effective approximation, the solution below 

will be constructed on the basis of characteristic functions of operator CD. 
We shall seek a solution, bounded for z -+ ‘0, in the form of a sum u = u* + v, where 

u*(z) is a particular solution of Eq. (4.1) vanishing for 5 - CC, while v(z) is the solu- 
tion of the corresponding homogeneous equation and satisfies the boundary condition 
us = h - us*. To obtain u*(z) , we introduce the fundamental solution G*(x) of Eq.(4.1). 
This solution is connected with Green’s function (2.10) by the relationship G*(s) = 
= G(Z) - 5 / 2 c,,. Then 

U*(x)= c*(x-x’)qD(Z’)dZ’ 
c 

(G.2) 

r, 
Apparently, v(z) can be represented by superposition of characteristic functions of the 

operator @ . The functions are not increasing for 5 --+ -X 
co 

v(z) = 2, vn en (x), en (2)= e 
ik,x 

(k0 = 0, Im k, > 0) (4.3) 
n=o 

The coefficients of expansion are found if a system of functions e”(r) is constructed 

SO that these functions are concentrated on S and form a reciprocal basis 

(em, e,) E 
s 

em (CC) elk,” dx = P (k,) = b,m (m, n=O, 1, . . .) (5.4) 

(&lrn is Kronecker’s symbol) 
For this purpose we take advantage of the following representation [15] 

Q, (k) = Q’+(k) 0-V) VI’_ (k) = Q’+ (- k)) (4.5) 

Here mD+ are entire functions of the first order of growth and of the I -type. These 
functions also do not have roots within the upper (lower) half-plane. Inverse Fourier 
transforms of these functions are concentrated in intervals [0, 11 and [- 1, 0] , respect- 

ively. It is not difficult to show that in the lower half-plane Q_(k) and O(k) are connec- 
ted through the following relationship 

In Q_(k) = -.& 
c 

lrr,@At) dk’ (Im k > 0) 

i 

The real axis serves as the contour of integration with circumvention of the origin of 
coordinates from below. It is easy to verify that when Q_(k) is given the functions with 

reciprocal basis are found from the following equations 

em (k) = a_’ (k”,s I”,r!_ &) (4.6) 

It is possible to show that em ( 2 are concentrated in S and have the form ) 
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0 

s CD_ (x - 2’) e-ik”‘X’ dx' (4.7) 

From (4.3) and (4.4) we obtain 
on = (en, us) (n = O,i,...) (4.8) 

By adding (4. ‘2) and (4.3) we find 

u (2) = 
1 

c+ (Z - 2’) qD (2’) dx’ + i 8 e, (4 @EL’) (4.9) 
?I=0 

The solution can also be represented in the form 

u (2) = 
s 

G (2, z’) f (z’) dx’ @ED) (4.10) 

D 

where G(z, z’) is Green’s function for the given problem. It is easy to check that G(z, 2’) 
allows the following representation : 

c (2. z’) = 65 (5 - 2’) + 
s 

E (2, 2”) G (s”, 2’) dx”, E(x, cc’)= jj en (x) en (x’) (4.11) 
S n=o 

In the approximation which utilizes first roots, the solution is determined by charactec- 

istic functions of the operator (3.2). This solution can be constructed by the same me- 
thod as the exact solution if the corresponding approximate expressions for G* and for 

the first functions of the reciprocal basis are obtained. From (3.5) we find 
ieik,lxI 

c* (x) z - co-1 zq (- 4 + 2 Re qq-J (4.12) 

where n(5) is the function of unit jump. 

The roots m_(k) are located on the upper half-plane. Therefore, from (3.2) and (4.5) 

it follows direct1y that D_(k) z v&i _ k / kr) (i + k /&;, 

and consequently we have according to (4.6) 

(4.13) 

Taking into account these relationships and utilizing Eqs. (4.8) for coefficients vn it 
is easy to ascertain that the boundary conditions are expressed through derivatives u(z) 
at the point z = 0 

(i_q(* +F&(0)=uOr (e?y) 

iD,(iDX + h) 

kl (h + h) 
u (0) = u1 G (el,h) (4.14) 

the second condition is equivalent to two real conditions here. 
Now let us turn to the force problem (1.10) which in the given case assumes the form 

~Q(Z?+.)u(2’)dz’ =qD(x) @En), sr(z.8’)u(X’)dZ’=qS(2) (~$2:; 

Just as previously, we shall be looking for a solution in the form (4.9). However, now 
it is appropriate to write C,(Z) = Z, since U(Z) is determined with accuracy to a constant. 

Substituting u into the boundary conditions, we obtain 

5 u*$, (2) = Q 64, Q (4=9~&4--~U*(4 
m 
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The construction of the basis corresponding to fe,, for finding coefficients un repre- 

sents a significantly more difficult problem than the construction of en. This is a con- 
sequence of inhomogeneity of couplings in S. In the general case the problem is reduced 

to the solution of an infinite system of equations 
CO 

I’,,,,,= (e,, re,,), Q, = (e,,,. Q) (4.16) 

However, the problem simplifies considerably in the approximation using first roots. 
In this case we have for the basis en(cf. (4.13)) 

The boundary conditions assume the form (m = 0.1) 
2 

rm(Qu (0) = qmr rm = 2 rmnen p,), q, = (et,, qs) (4.18) 

Here e”(U).) are differential operators corresponding to (4.17). 
We note that in contrast to couple-stress theories of elasticity, here the connection 

between approximate and exact boundary conditions is clear. In particular, a method 
is indicated for the computation of moments q ,,, from forces qs given on the boundary. 

5. Let us examine the simplest generalization to the case of a three-dimensional 
medium with central interaction. In such a medium the forces which arise when the 

distances between the points @) and r’(z’=) are changed, are proportional to this change 

and are directed along the line connecting the points. It is possible to show that such a 
medium is described by the operator of elastic couplings Y‘@’ with the kernel 

Y@ (r, r’) = 
(2” - 2’“) (za - z’@) 

Ir-r’12 y P, r’), Y (r, r’) = Y (r’, r) (5.1) 

In this connection it is assumed that Y(r, r’) = 0, if 1 r - r’ I> 2. 
Repeating almost verbatim the arguments presented for the one-dimensional case, we 

can introduce three-dimensional operators Q)$,, I’$) , etc., to formulate the fundamen- 

tal boundary value problems, and to write Green’s formula. In particular, with obvious 
notation, Green’s formula for the three-dimensional case has the form 

(5.2) 

In connection with the fact that the radius of forces of long-range interaction is usu- 
ally small compared to other characteristic dimensions, the boundary value problems for 
the half-space (the half-plane) are of fundamental interest in the nonlocal theory of 

elasticity. The solution of these problems can be obtained by a method which is analog- 
ous to the method examined above for a half-axis if Green’s function is known for the 
unbounded medium. The latter can be easily constructed for a homogeneous isotropic 

medium. In this case 
Y (r, r’) = Y .(r - r’), Y(r)=Y((r) (r=lrl) 

cD”B (r) = *O”fi8 (r) - YaB (r), (5.3) 

Let us break up the energy operator Oaf’ into a longitudinal a${ and a transverse 
Q)$ component. We can show that the following representation (k = lkl) is valid for the 
Fourier transforms of the corresponding kernels 
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Here Y(,), Y(,) and Y are connected by relationships I 

y (r)=Y(lj (r) + 2yctj (r), Y(,) (r) = 5 r-T (r)dr 

In accordance with (5.4) we can write the separation of static Green’s function into 

a longitudinal and a transverse component 

For the condition Y(r) > 0 the properties of entire functions @)(I, t) (k) and in parti- 
cular the distribution of roots are analogous to properties of @ (k) of the one-dimensional 

medium. This makes it possible to separate Gtl, tl (k) into partial fractions. For example 

Cc,) (k) = - Cc&2 + g(,) + 2k2 i 
1 

(Imkn>O) 
?I=1 k&,)’ (k,) (k2 - k,“) 

(5.7) 

In the r-representation we obtain (A is the Laplace operator) 

For the approximation with respect to first roots we find in analogy to (3.5) 

For Reki = 0 the expression which was obtained earlier in [5] follows from these 
equations. 

In conclusion we note the characteristic boundary effect for the three-dimensional 
medium. The existence of new types of longitudinal and transverse waves must lead to 
the appearance of new surface waves. In contrast to Rayleigh waves, these waves decay 

for large lengths in a layer of the order of the parameter for long-range interaction. 
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Propositions expressed in [9] receive further development herein, are refined and sys- 
tematized. Proceeding from the law of interaction between atoms, a conception is pro- 

posed which considers cracks in elastic solids as nontri- 

T vial modes of equilibrium deformation. Crack formation 

is treated as the loss of stability (in the large) of trivial 
equilibrium modes. The formulation of the brittle frac- 
ture criterion in the neighborhood of the end of the crack 

is refined. The carrying capacity of a solid having an 
equilibrium crack is estimated approximately in an 
example of the A, Griffith problem. 

Fig. 1 

77 1. Let T = DU (where D = &r is the atomic 
diameter) be the force of interaction between two 


